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Abstract: Measuring the soil water content (SWC) is a fundamental component of the sustainable
management of water resources, soil preservation, and high irrigation efficiency. Non-destructive
SWC measurements using soil moisture sensors (SMSs) enables timely irrigation and reduces overir-
rigation and water stress. Within this context, the performance of four commercial single-point soil
moisture sensors (Watermark and tensiometer (Irrometer Company, Inc., Riverside, CA, USA), SM150
(Delta-T Devices, Cambridge, UK)), FieldScout TDR300 (Spectrum Technologies, Aurora, IL, USA)
and one soil profile PR2 probe (Delta-T Devices, Cambridge, UK) were tested under anthropogenic
eutric cambisol with a silty clay loamy texture (20, 30, and 40 cm) to evaluate accuracy and sensi-
tivity to changes in the SWC in an irrigated apple orchard. The Watermark and tensiometer were
additionally tested in the laboratory to convert soil water tension (kPa) to the volumetric soil water
content (%vol.). In general, all tested SMSs responded to changes in the SWC, with sensor-to-sensor
differences. The Watermark and tensiometer underestimated the SWC, while the TDR overestimated
the SWC. The SM150 and PR2 showed high accuracy, i.e., SM150—RMSE-2.24 (20 cm), 2.18 (30 cm)
and 2.34 (40 cm), MSE—5.02 (20 cm), 2.93 (30 cm) and 1.89 (40 cm), and PR2—RMSE-1.8 (20 cm),
1.3 (30 cm) and 1.55 (40 cm), MSE-3.23 (20 cm), 1.7 (30 cm) and 2.39 (40 cm) at all observed soil depths.

Keywords: soil moisture sensor; volumetric water content; irrigation scheduling

1. Introduction

One of the most important factors in irrigation scheduling is to determine the irriga-
tion time as accurately as possible, which will condition the water productivity (WP) or
irrigation efficiency (IE) [1–5], sustainable management of nutrients [6–8], preservation of
soil moisture [9], soil physical properties [10], and ultimately efficient crop production [11].
Excessive irrigation frequently occurs at the field scale, leading to the wastage of valuable
water and energy resources, agricultural run-off, pollution of the surface and groundwater,
and depletion of water sources and soil nutrients, and it can also cause soil salinization [12].
On the other hand, insufficient irrigation can induce water stress, leading to lower yields
and impaired crop quality [13,14]. Generally, irrigation scheduling can be classified into
three categories: visual and feel methods (crop and soil), water-balance-based methods,
and monitoring of the soil water content (SWC). Effective irrigation scheduling based on
monitoring the SWC provides real-time data for the upper (field water capacity, FWC) or
lower SWC limit (management allowable depletion, MAD), which reduces the previously
mentioned negative consequences of improper irrigation scheduling. Different versions
of SMSs that measure the soil water potential (tensiometers and gypsum blocks), neutron
scattering methods, soil water dielectrics (Time domain reflectometry, TDR and Frequency
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domain reflectometry, FDR), gamma ray method, neutron probes are available on the
market. In the last few decades, significant advances have been made in the development
and improvement of technologies in the field of soil moisture sensors (SMSs) that facilitate
decision-making in irrigated crop production. The aspiration is to create SMSs that are
accurate, respond quickly to changes in the dry and wet soil phases, are long-lasting, easy
to use, and ultimately low-cost. As stated by Yu et al. [10], in the future, SMSs should be
developed to achieve high-precision, low-cost, non-destructive, automated, and highly
integrated systems. Although great efforts are being made to ensure that SMSs meet all the
criteria, it seems that ultimately the choice of SMSs by agricultural producers will depend
on the price. On-farm irrigation scheduling based on weather, crops, personal calendar
schedule, and the soil feel method are commonly used methods of irrigation scheduling in
the Republic of Croatia, where very low interest in accepting new technologies in irrigation
scheduling is shown. During the last twenty years in Croatia, great efforts have been made
to increase irrigated surfaces, on which cereals are mostly grown, while income crops are
less represented. In the 2005 to 2020 period, through the National Project of Irrigation
and Land and Water Management in the Republic of Croatia, 16 public irrigation schemes
with a total area of 11,579 ha were built, and a total of 8 public irrigation schemes were
rehabilitated with a total area of 4623 ha. The total area of public irrigation schemes that
have been implemented, are being implemented, or have been rehabilitated is 16,382 ha [15].
Although the occurrence of intense and long-lasting droughts in this area is becoming
more frequent [16], agricultural producers still find it difficult to decide on irrigation. The
exception is in fruit growing, where modern and intensive production in climate change
conditions is nearly impossible without irrigation, which the producers have recognized.
However, even in this area of agricultural production, the application of scientifically based
methods in determining the irrigation time is lacking, which raises concerns in the context
of the use and sustainability of water resources. The main reason for this is the lack of
basic knowledge about irrigation scheduling, i.e., the infiltration rate, SWC, soil water
movement, and impossibility of interpreting the obtained measurements and using them
as practical guidelines. Nowadays, many low-cost and easy-to-use SMSs are available on
the market, which can be useful in planning the orchard irrigation scheduling. Numerous
previous studies have focused on testing SMSs in different soil types, at different soil
depths, installation positions, and with different irrigation systems [17–29]. To the greatest
extent, the study results, that is, the SWCs obtained by SMS measurements were compared
with the actual SWCs obtained by the gravimetric method (GM). Although the GM is the
most accurate method for the analysis of the soil water content (SWC) and is cost-effective
and reliable, in irrigation scheduling, it is impractical, time-consuming, and destructive.
Due to the high accuracy of the GM, it has been used as a scientific reference method to
calibrate SMSs in different soil types and installation depths, including in our study. The
bibliometric analysis presented by Singh et al. [30] shows various methods not only for
direct (gravimetric and volumetric methods) and indirect (SMS) measurements of the SWC
but also remote sensing and machine learning approaches. Their analysis showed that
TDR is the most widely used indirect method for measuring the SWC. Additionally, the
authors conclude that the use of soil moisture information coupled with machine learning
algorithms has created a new era in the fields of hydrology, climate change studies, and
agriculture. The study goal is to test, evaluate, and propose an SMS that is easy to use, low
cost, responds quickly to changes in the SWC, is effective, and gives accurate real-time
SWC data in an irrigated orchard with respect to performance accuracy at different soil
depths and installation orientations. These evaluations were conducted using four com-
mercial single-point SMSs and one commercially available soil profile probe, Watermark
and tensiometer (Irrometer Company, Inc., Riverside, CA, USA), PR2 probe (Delta-T De-
vices, Cambridge, UK), SM150 (Delta-T Devices, Cambridge, UK), and FieldScout TDR300
(Spectrum Technologies, Aurora, IL, USA), under anthropogenic eutric cambisol (WRB)
with a silty clay loamy texture. A decision-making guide is being provided to facilitate
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the selection of the SMS, both effectiveness-wise and cost-wise, not only in the irrigated
orchard but for a wider range of drip-irrigated crops.

2. Materials and Methods

The field study was carried out in the 2022 growing season at the experimental station
of the Faculty of Agrobiotechnical Sciences Osijek in Tenja, continental Republic of Croatia
(45◦51′ N and 18◦78′ E, 91 m altitude). The performance of SMSs was tested in an irrigated
apple (Malus domestica) orchard of the ‘Lijepocvjetka’ traditional Croatian variety, planted
in 2019. The total area of experimental field is 5000 m2. The distance between the trees is
2.5 m, and the distance between rows is 4.5 m (Figures 1 and 2).
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Figure 2. Position of soil moisture sensors (red square) in an irrigated apple orchard.

During the vegetation period, the field was fertilized as appropriate and treated
against diseases and pests according to common agricultural practices. The study site has
anthropogenic eutric cambisol (WRB), and a silty clay loamy texture. The main properties
given in Table 1 were previously presented by Marković et al. [31].

The long-term (LTA, 1961–1990) average annual rainfall in this area is 650 mm, while
the average growing season rainfall is 368 mm. In the last decade, the area has been affected
by frequent changes in weather extremes in a very short period, which negatively affected
agricultural production [32–34]. The weather data (rainfall (mm), air temperatures (◦C), air
humidity (%), wind speed (km day−1), and insolation (h)) during the study period were
collected using the weather station located at the experimental site. The weather and soil
data collected from the experimental site were used to analyse crop water requirements
(CWR) with a CROPWAT 8.0 computer model. The effective rainfall was determined
according to the USDA method integrated into the CROPWAT model. As for the soil, the
following input parameters were used: 180 mm day−1 for the maximum rain infiltration
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rate, 300 cm for the maximum rooting depth, 40% for the initial soil moisture depletion,
and 130 mm for the total available soil moisture. The soil data used for the model were
collected from a previous pedological analysis. In the CROPWAT model, the Penman–
Monteith method for calculating reference evapotranspiration (ETo) was integrated, and the
following crop coefficients (kc) were used for apple to determine crop evapotranspiration
(ETc): 0.5 (kcini), 1.2 (kcdev, mid) and 0.95 (kclate). The 3-year-old apple orchard is irrigated
using a drip irrigation system installed above ground (60 cm) with 90 cm emitter space
along the drip line. The emitter’s irrigation uniformity was determined for each tree row
in the study by measuring the water level in cans located below the emitter. The cans
were located to define irrigation uniformity and its effect on the SMS readings with high
accuracy. The emitter flow rate was 4 L h−1. The irrigation rate was determined according
to the SWC at field capacity (FC, 38.7% vol. as an average of two tested soil depths), soil
wetting depth (50 cm), and management allowable depletion (MAD) of 50%. The MAD
for apple orchard was set according to Özmen [35]. During the study period, the water
table was approximately 3 m deep, and it did not influence the soil water content in the
root zone during the growing season.

Table 1. Physical and chemical soil properties at the study site.

Physical Properties

Depth Silt Clay Sand P RC AC PWP PD
(cm) % % % % % % % g/cm3

0–30 64.7 32.5 2.8 44.8 39.6 5.2 23.7 2.75
30–50 66.4 31.3 2.3 42.1 37.8 4.3 24.5 2.66

Chemical properties

Depth pH Al-P2O5 Al-K2O Organic matter CaCO3
(cm) H2O KCl mg 100 g−1 % %

0–30 5.59 6.60 26.40 29.70 2.55 1.25
30–50 6.85 7.64 13.75 25.33 1.63 2.51

P—porosity; RC—retention capacity; AC—air capacity; PWP—permanent wilting point; PD—particle density.

Irrigation water was pumped from a nearby well, 39 m deep. The quality of irrigation
water was analysed in terms of chemical properties. Results are given in Table 2 and were
previously presented by Kojić et al. [36]. The obtained values were interpreted according to
FAO [37] guidelines and no significant deviations were found, that is, water could be used
without restrictions.

Table 2. Analysis of irrigation water.

Units Usual Range Result Unit Usual Range Result

Turbidity 3 Mg me L−1 0–5 3.9
pH 6.5–8.4 7.4 Ca me L−1 0–20 6.8
EC dS m−1 0–3 0.7 K me L−1 0–2 1.3

Toxicity

Cl mg L−1 0–30 3.4
B mg L−1 0–2 0.6

Na mg L−1 0–40 2.6

2.1. Soil Moisture Sensors

The performance of four commercial single-point SMSs and one soil profile probe
were studied. SMSs were installed at 20, 30, and 40 cm depths and two orientations (hori-
zontally or vertically), depending on the technical characteristics of the sensors. Therefore,
Watermark (Figure 3A) and tensiometer (Figure 3B, Irrometer Company, Inc., Riverside,
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CA, USA) were installed vertically at 20, 30 and 40 cm depths, the PR2 probe (Delta-T
Devices, Cambridge, UK) was installed vertically at a 40 cm soil depth (Figure 3C), and
the SM150 (Delta-T Devices, Cambridge, UK) SMS was installed horizontally at 20, 30 and
40 cm soil depths (Figure 3D), while FieldScout TDR300 (Spectrum Technologies, Aurora,
IL, USA) was inserted vertically at 20 cm (Figure 3E).
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Sensors were installed at the mid-point between two drippers and 15 cm from the drip-
per. The installation procedure for all tested SMSs followed the manufacturer’s instructions.
The sensors were installed on 10th May, in three sets, that is, three replicates, between trees
so that they did not interfere with the tree roots. In addition, a set of SMSs was installed
next to the experimental field, i.e., on a non-irrigated area, to monitor the SWC and SMS
reaction in dry farming. In total, twelve Watermark, tensiometers, and SM150 sensors, four
PR2 access tubes, and one portable TDR300 were used in the study. The Watermark and
the tensiometer were prepared according to the manufacturer’s installation procedure. The
sensors were wet and dried in several cycles and then installed wet at a certain depth (20,
30, or 40 cm). Additionally, before installation, the tensiometer was filled with water with
algaecides, and a vacuum was established. The perpendicular soil opening was made using
a soil auger with a diameter nearly the same as the SMS to enable the best possible contact
of the SMS with the soil, that is, in undisturbed soil. Given that these two sensors measure
soil water tension (SWT), the sensors were calibrated in the laboratory for the soil type
at the study site to convert the SWT to SWC (%vol.). For the SMS laboratory calibration,
the undisturbed soil samples were collected with sample rings (Eijkelkamp, Soil&Water,
300 cm3). The sample rings were hammered into two soil depths (≤30 cm and 30 to 60 cm),
and afterward the top and the bottom of the soil sample were trimmed with a knife to
remove the excess soil. In the laboratory, the samples were placed on a tray filled with
distilled water. The Watermark sensors were placed in four sample rings and left for two
days so that they could equilibrate with the matric potential of the soil water. After the
surface of the sample was watered, that is, when the maximum water capacity (MWC) was
reached, the soil samples were weighed daily on a precise digital scale, and at the same
time, the measurements were taken with a Watermark handheld reader. Additionally, four
soil samples were collected and used to determine the SWC using the gravimetric method.
After a constant soil sample weight was reached, the soil samples were dried in an oven at
105 ◦C for 24 h. After the sample had dried to constant mass, the samples were weighted
on a digital scale to determine the mass of the dry soil sample (Mds, g). Ultimately, the
SWC was calculated according to the FAO [37] procedure as follows (Equation (1)):

SWC =
(Mms − Mds)

Mds
× 100 (1)

where SWC is the soil water content (%), Mms is the mass of moist soil (g), and Mds is
the mass of the oven-dried sample (g). The volumetric water content (VWC, %vol.) was
computed as described in Equation (2) [38]:

θv = θϱb (2)
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where θv is the VWC, θ is gravimetric moisture (GM), while ϱb is the soil bulk density
(g cm−3). Given that the research was set up in three replicates, we performed a precision
test as recommended by FAO [37] to ensure quality control. The relative percent difference
(RPD) was calculated as follows (Equation (3)):

RPD % =
M1 − M2(

M1+M2
2

) (3)

where RPD is the relative percent difference (%), M1 is result of a sample, and M2 is result of
the sample’s duplicate. Calibration of the tensiometer was performed in the same manner
as for the Watermark except for the size of the soil sampling container. The result of the
calibration process is presented in the calibration curve in Figure 4.
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PR2 access tubes were inserted in the prepared openings with a spiral soil auger
(30 mm Ø) to ensure the best possible contact of the tube wall with the soil. A rubber ring
provided in the set was placed around each access tube, and during the study period when
the tubes were not in use, they were closed with rubber plugs to prevent the ingress of
water or dust. A 40 × 30 cm hole was made for the horizontal orientation of the SM150
SMS. The sensors were placed parallel to the soil surface at a depth of 20, 30, or 40 cm,
so that the two sensing rods measured the SMS in undisturbed soil. After the hole in the
ground was buried, the cables were connected to the data logger. The TDR300 is a portable
SMS that requires no prior preparation. In this study, predrilled holes were not necessary,
because the SWC was generally maintained at a high level, and so there were no problems
with inserting the sensor into the soil. However, we must emphasize that the 10 and 30 cm
rods that are available on the market were excluded from this study. The shorter rod (10 cm)
was excluded because the 10 cm soil layer has no meaning for the orchard due to water
uptake in the deeper soil layer, while the longer rod (30 cm) was excluded because there
was a distortion due to insertion into the soil due to the increased clay content, which
would cause inaccurate measurements. The TDR300 takes readings in two different modes
based on the soil clay content (%), i.e., standard mode (<27%) and high clay mode (>27%).
Considering that the clay content in the soil present at the experimental field is on average
31%, the high clay mode was chosen for this research.

As for the SMS operational principle, in this study, the Watermark and tensiometer
measure the physical force holding water in the soil or soil water tension (cbar or kPa),
while the remaining SMSs in this study measure the percentage of water by volume (%vol.).
A Watermark sensor (200SS) operates as an electrical resistance sensor that measures the
soil water tension with two electrodes embedded inside. The water content of the sensor
changes depending on the SWC of the surrounding soil, which causes a change in the
electrical conductivity between the electrodes whereby the resistance increases as the SWC
decreases. The newer version of the Watermark sensor compared to the earlier versions
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of gypsum blocks is not prone to deterioration due to the synthetic membrane and is not
sensitive to soil salinity due to the inner cylindrical tablet. The tensiometer works on the
same principle as the Watermark SMS. It is very easy to use and affordable, but with poor
efficiency in dry conditions [39], and the need for maintenance is often highlighted as
a limitation. We came to the same realizations ourselves in our previous research [31];
however, we still decided to use the tensiometer in this research because it was applied
in irrigated conditions where the high SWC was maintained. The working principle of
the PR2 profile probe is frequency domain reflectometry (FDR) designed to monitor the
SWC in %vol. [40]. The PR2 probe measures the SWC at various depths, depending on
the probe length. The SM150 SMS consists of a sealed plastic body with two sensing rods
with an output signal (differential analogue DC voltage) converted to SWC (vol.%) by a
data logger (Delta-T Devices, Cambridge, UK). The measuring range is to 70% vol. with
readout of ±3% accuracy. TDR300 is an SMS that measures the SWC in vol.% with high
accuracy, does not require prior preparation, is easy to use, can be moved in the field,
and does not lead to significant soil disturbance. In this study, the sensor was set to high
clay mode, considering that the clay content in the soil is 32.5%, and according to the
manufacturer’s recommendation, the high clay mode will be more accurate for soils with
higher clay contents (>27%). The use of this sensor in saline soils is less reliable, which was
not an issue in our study, but it is important to point out that the sensor gives different
results in soils with an increased clay content, which was present in our case.

2.2. Field Calibration

The SWC was monitored each day during the study period. After rain or irrigation,
the SWC was measured at intervals every half hour to monitor the reaction speed of an
individual SMS to changes in the SWC at each installation depth. In the results, the daily
measurements are presented as an average for each tested SMS and installation depth. Soil
samples for field calibration were taken for each observed soil depth after the values on
the readers were unchanged within a few hours after the irrigation or rainfall events. Each
time after measuring the SWC with a handheld meter or data logger, a soil sample was
taken with a soil auger from the soil depth where the sensor was installed, and the standard
gravimetric procedure was followed. A soil auger with a 3 cm width was used to collect
the 76 soil samples from each soil depth (20, 30, and 40 cm) in three replicates. In total,
during the study period, 684 soil samples were collected. The soil samples were placed
in paper bags, labeled, and then weighed in the laboratory on a precision digital scale to
determine the mass of moist soil (Mms, gr). The performance and accuracy of the SMS was
evaluated using the root mean square error (RMSE) equation (Equation (4)) as follows:

RMSE = (n−1
n

∑
i=1

(Si − Oi)2) (4)

where RMSE is the root mean square error, Si is the estimated value, while Oi is the observed
value. The RMSE analysis was performed for the evaluation of calibration equations as the
difference between SMS readings and gravimetric moisture (θ). Mean absolute error (MAE)
was calculated to quantify the deviation of the estimated θv means from the observed θv
(Equation (5)):

MAE =
1
N

N

∑
i=1

(Si − Oi) (5)

where n is the number of observations, and Si and Oi are estimated and observed values.
To describe the average difference between the sensor readings and corresponding VWC
measurements, the mean difference (MD) was used (Equation (6)) as follows:

MD =
∑n

i=1(Msi − Mgi)
n

(6)
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where Msi is the sensor reading, Mgi is the θv measurement, and n is the number of
samples. The ANOVA, correlation and regression analyses were performed (p < 0.05 and
p < 0.01) using STATISTICA 13 (StatSoft, 243 Inc., Tulsa, OK, USA) to compare the SMS
readings with the SWC obtained by the gravimetric method.

3. Results
3.1. Climatic Conditions and Soil Water Content

The year 2022 was characterized by a dry spring and an extremely warm and dry
summer. During the study period (May–August), the amount of rainfall was lower by
84.7 mm, while the air temperatures were 3.1 degrees higher compared to the mentioned
period during the long-term average (LTA, 19611990, Table 3).

Table 3. Monthly weather data during the study period (May–August) and long-term average (LTA,
1961–1990).

Period May June July August Average/Total Aberration

Monthly rainfall (mm) 2022 66.0 77.2 19.2 22.7 185.1 −84.7
LTA 58.5 88.0 64.8 58.5 269.8

Efficient rainfall (mm)
2022 59.0 67.5 18.4 29.5 174.4 −65.3
LTA 53.0 75.6 58.1 53.0 239.7

Monthly air temperature (◦C) 2022 19.0 23.3 23.8 23.7 22.5 +3.1
LTA 16.5 19.5 21.1 20.3 19.4

Air humidity (%) 2022 58.2 63.5 52.5 57.8 58.0 −11.7
LTA 69.0 70.6 68.5 70.8 69.7

Wind speed (m s−1)
2022 1.8 1.9 2.1 1.9 1.9 +0.2
LTA 1.9 1.8 1.7 1.6 1.8

Sunshine (h)
2022 8.7 10.8 11.3 9.4 10.05 +1.9
LTA 6.9 7.6 8.3 7.5 8.2

ETo (mm month)
2022 97.0 129.3 143.2 111.6 120.3 +20.3
LTA 88.4 103.8 113.8 97.0 100.8

ETc (mm month)
2022 44.4 80.4 92.2 71.5 72.1 +12.1
LTA 39.8 65.1 76.3 60.7 60.5

As a result of above-average high air temperatures (+3.1 ◦C), increased insolation
(+1.9 h), and a decrease in air humidity (−11.7%), the average increase in reference (ETo) and
crop evapotranspiration (ETc) compared to the LTA was 20.3 mm and 12.3 mm, respectively.
During the study period, the negative consequences of climate change in the form of
increased CWR were more pronounced due to the below-average amount of rainfall, which
conditioned the need to compensate for the lack of water with irrigation. The irrigation
rate during the study period was 35 mm for all tested SMSs, with the exception on 27 June
and 30 July, when 50 mm and 45 mm of irrigation water was applied. Irrigation doses were
increased in the mentioned irrigation events because the SWC at the deepest observed
soil depth (40 cm) fell below the MAD (50%). The irrigation requirement according to
CROPWAT model was 114 mm, yet the net irrigation rate based on monitoring SWC with
SMS was 275 mm. The variation in the SWC (%vol.) monitored by different SMSs and
installation depths, rainfall (mm), and irrigation events (mm) are shown in Figure 5.
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Figure 5. Soil water content (%vol.) monitored with different soil moisture sensors (Watermark,
tensiometer, SM150, TDR300 and PR2) at different soil depths (20, 30, and 40 cm).

The average SWC (%vol.) ranged as follows: from 35.76 (20 cm) to 32.51 (40 cm)
measured with the Watermark SMS, from 31.80 (20 cm) to 28.96 (40 cm) measured with the
tensiometer, from 35.92 (20 cm) to 33.24 measured with SM150, 37.93 (20 cm) measured
with TDR300, and from 38.18 (20 cm) to 30.79 (40 cm) measured with the PR2 probe. As for
the SWC measured with the gravimetric method, the SWC ranged from 36.23 to 33.36. The
factorial ANOVA showed a significant variation in the SWC across soil depths and tested
SMSs (Table 4).
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Table 4. Average soil water content (%vol.) measured with the tested soil moisture sensors and
gravimetric method, and ANOVA results.

Average Soil Water Content (%vol.)

Watermark Tensiometer TDR300 SM150 PR2 Gravimetric

20 cm 32.76 31.80 38.93 35.92 36.18 36.23
30 cm 30.83 30.12 33.40 34.23 34.11
40 cm 30.51 30.96 31.24 33.79 33.36

ANOVA

F p SMS LSD0.05 LSD0.01

SMS 112.6 0.00 Watermark 0.822 1.080
Soil depth 110.3 0.00 Tensiometer 0.531 0.698

SMS × Soil depth 4.9 0.00 SM150 1.083 1.423
PR2 0.865 1.137

SMS—soil moisture sensor, LSD—least significant difference.

3.2. Soil Moisture Sensors’ Performance in an Irrigated Orchard

Linear regression equations were developed to estimate the SWC based on sensor
readings. The SMS readings were validated by comparing the SWC (%vol.) readings
to those determined gravimetrically (Table 5). Strong correlations (r) were found for
SM150 and PR2 (20, 30 and 40 cm), while the weakest correlations were observed for the
tensiometer (20, 30, and 40 cm) and TDR300 (20 cm).

Table 5. Parameters of the linear regression equation.

Soil Depth r Intercept Slope p-Value

Watermark

20 cm 0.63 32.472 0.105 0.045
30 cm 0.60 46.243 −0.388 0.000
40 cm 0.59 26.686 0.205 0.013

Tensiometer

20 cm 0.29 34.112 0.067 0.011
30 cm 0.26 49.135 −0.532 0.085
40 cm 0.24 26.927 0.222 0.481

TDR300

20 cm 0.32 41.377 −0.136 0.508

SM150

20 cm 0.95 1.920 0.987 0.000
30 cm 0.96 0.579 0.076 0.000
40 cm 0.72 0.613 0.014 0.000

PR2

20 cm 0.96 0.912 1.000 0.000
30 cm 0.97 0.651 0.114 0.000
40 cm 0.91 0.126 1.017 0.000

Significant (p < 0.05) values are highlighted.

Pearson’s correlation coefficient (r) showed the strongest correlation (r = 0.98; p < 0.05)
between SM150 and PR2 at a 20 cm soil depth (Table 6). In general, the strongest correlation
was found among SM150 and PR2 at all observed soil depths, r = 0.98 (20 cm), r = 0.84
(30 cm), and r = 0.87 (40 cm), and among Watermark and tensiometer, r = 0.74 (20 cm),
r = 0.72 (30 cm), and r = 0.85 (40 cm). In average, across SMSs and soil depths, the weakest
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correlation was found among the tensiometer and TDR300 compared to the SM150 and
PR2 SMSs.

Table 6. Pearson’s correlation coefficients (r) among tested soil moisture sensors at different soil
depths.

W
20 cm

W
30 cm

W
40 cm

T
20 cm

T
30 cm

T
40 cm

TDR300
20 cm

SM150
20 cm

SM150
30 cm

SM150
40 cm

W 20 cm -
W 30 cm 0.69
W 40 cm 0.61 0.79
T 20 cm 0.74 0.76 0.75
T 30 cm 0.68 0.72 0.67 0.89
T 40 cm 0.66 0.70 0.85 0.85 0.86

TDR300 20 cm 0.46 0.39 0.26 0.29 0.26 0.24
SM150 20 cm 0.10 0.38 0.33 0.24 0.15 0.23 0.15
SM150 30 cm 0.16 0.16 0.47 0.37 0.14 0.18 0.17 0.56
SM150 40 cm 0.21 0.59 0.29 0.13 0.16 0.12 0.18 0.51 0.68

PR2 20 cm 0.31 0.56 0.59 0.21 0.14 0.37 0.12 0.98 0.62 0.63
PR2 30 cm 0.36 0.18 0.47 0.22 0.14 0.26 0.18 0.56 0.84 0.71
PR2 40 cm 0.35 0.60 0.69 0.12 0.17 0.74 0.14 0.51 0.77 0.87

W—Watermark, T—tensiometer; significant correlations (p < 0.05) are highlighted.

The results of the RMSE, MSE and MD indices for the tested SMSs and observed soil
layers are presented in Table 7. The RMSE was lowest for PR2 at all observed soil depths,
followed by SM150. The MSE and MD revealed similar patterns in SMS performance; MSE—
tensiometer > TDR300 > Watermark > PR2 > SM150, and MD—TDR300 > tensiometer >
Watermark > SM150 > PR2.

Table 7. Values of the RMSE, MSE and MD indices obtained at 20, 30 and 30 cm soil depths for the
tested soil moisture sensors.

W
20 cm

W
30 cm

W
40 cm

T
20 cm

T
30 cm

T
40 cm

TDR300
20 cm

SM150
20 cm

SM150
30 cm

SM150
40 cm

PR2
20 cm

PR2
30 cm

PR2
40 cm

RMSE 3.86 4.24 3.67 5.81 4.53 5.51 5.03 2.24 2.18 2.34 1.80 1.31 1.55
MSE 14.86 18.01 13.36 33.78 20.56 30.3 25.25 5.02 2.93 1.89 3.23 1.70 2.39
MD 3.13 3.12 3.0 4.75 3.92 4.57 4.42 2.0 3.91 3.26 1.34 1.24 1.51

W—Watermark, T—tensiometer; significant correlations (p < 0.05) are highlighted.

3.3. Soil Moisture Sensor Performance in the Rainfed Treatment

The average SWC (%vol.) in rainfed treatment ranged as follows: 28.23 (20 cm), 27.13
(30 cm), and 29.14 (40 cm) measured with Watermark; 28.47 (20 cm), 28.56 (30 cm), and
26.55 (40 cm) measured with the tensiometer; 25.23 (20 cm) measured with TDR300; 25.22
(20 cm), 23.36 (30 cm), and 21.22 (40 cm) measured with SM150; and 26.58 (20 cm), 24.55
(30 cm), and 23.59 (40 cm) measured with the PR2 probe. As for gravimetric method, the
SWC (%vol.) at the observed soil depths was 26.73 (20 cm), 24.56 (30 cm), and 23.27 (40 cm).

Linear regression equations for the SWC evaluation in the rainfed treatment are pre-
sented in Table 8. The SMS readings were validated by comparing the SWC (%vol.) readings
to those determined by the gravimetric method. Strong correlations (r) were found for
Watermark (20 cm = 0.93, 30 cm = 0.90, and 40 cm = 0.89), TDR300 (20 cm = 0.82), SM150
(20 cm = 0.96, 30 cm = 0.95, and 40 cm = 0.92), and PR2 (20 cm = 0.98, 30 cm = 0.97,
and 40 cm = 0.93), while the weakest correlations were observed for the tensiometer
(20 cm = 0.49, 30 cm = 0.46, and 40 cm = 0.44).
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Table 8. Parameters of the linear regression equation for the rainfed treatment.

Soil Depth r Intercept Slope p-Value

Watermark

20 cm 0.93 3.454 0.125 0.035
30 cm 0.90 4.231 0.348 0.010
40 cm 0.89 3.674 0.225 0.023

Tensiometer

20 cm 0.49 14.112 0.097 0.016
30 cm 0.46 19.135 0.422 0.075
40 cm 0.44 16.927 0.282 0.321

TDR300

20 cm 0.82 1.392 0.113 0.012

SM150

20 cm 0.96 0.841 0.927 0.000
30 cm 0.95 0.462 0.016 0.000
40 cm 0.92 0.600 0.019 0.000

PR2

20 cm 0.98 0.612 0.020 0.000
30 cm 0.97 0.151 0.014 0.000
40 cm 0.93 0.146 1.019 0.000

Significant (p < 0.05) values are highlighted.

In the rainfed treatment, the strongest correlation (r = 0.94; p < 0.05) was found between
SM150 and PR2 at 20 and 30 cm soil depths (Table 9). The strongest correlations were
found between SM150 and PR2 at all observed soil depths, r = 0.94 (20 cm), r = 0.82 (30 cm),
r = 0.91 (40 cm). Furthermore, strong positive correlations were found among TDR300 and
SM150, r = 0.82 (20 cm), r = 0.88 (30 cm), and r = 0.85 (40 cm), among TDR300 and PR2,
r = 0.92 (20 cm), r = 0.91 (30 cm), and r = 0.90 (40 cm), and among Watermark and the
tensiometer, r = 0.74 (20 cm), r = 0.72 (30 cm), and r = 0.65 (40 cm). In general, the weakest
correlation was found among tensiometer, SM150, and PR2.

Table 9. Pearson’s correlation coefficients (r) among tested soil moisture sensors at different soil
depths in the rainfed treatment.

W
20 cm

W
30 cm

W
40 cm

T
20 cm

T
30 cm

T
40 cm

TDR300
20 cm

SM150
20 cm

SM150
30 cm

SM150
40 cm

W 20 cm -
W 30 cm 0.82
W 40 cm 0.81 0.89
T 20 cm 0.74 0.76 0.65
T 30 cm 0.78 0.72 0.67 0.79
T 40 cm 0.76 0.70 0.65 0.75 0.86

TDR300 20 cm 0.66 0.59 0.56 0.54 0.56 0.54
SM150 20 cm 0.22 0.41 0.32 0.24 0.19 0.26 0.82
SM150 30 cm 0.26 0.36 0.41 0.37 0.19 0.28 0.88 0.66
SM150 40 cm 0.25 0.53 0.31 0.13 0.15 0.32 0.85 0.57 0.78

PR2 20 cm 0.39 0.53 0.61 0.21 0.13 0.37 0.92 0.94 0.68 0.65
PR2 30 cm 0.39 0.28 0.52 0.22 0.18 0.31 0.91 0.94 0.82 0.74
PR2 40 cm 0.39 0.54 0.41 0.12 0.16 0.74 0.90 0.81 0.79 0.91

W—Watermark, T—tensiometer; significant correlations (p < 0.05) are highlighted.

The results of the RMSE, MSE and MD indices for the tested SMSs and observed soil
layers in the rainfed treatment are presented in Table 10. The RMSE was lowest for SM150
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and PR2 at all observed soil depths. In the rainfed treatment, the MSE and MD values from
highest to lowest were as follows: tensiometer > Watermark > TDR300 > SM150 > PR2.

Table 10. Value of the RMSE, MSE and MD indices obtained at 20, 30 and 30 cm soil depths for the
tested soil moisture sensors in the rainfed treatment.

W
20 cm

W
30 cm

W
40 cm

T
20 cm

T
30 cm

T
40 cm

TDR300
20 cm

SM150
20 cm

SM150
30 cm

SM150
40 cm

PR2
20 cm

PR2
30cm

PR2
40 cm

RMSE 2.36 2.14 2.17 4.21 4.13 5.00 2.13 1.94 1.84 1.22 1.00 1.11 1.15
MSE 11.24 10.21 10.13 13.21 14.54 20.47 4.84 3.21 2.87 2.98 1.64 1.74 2.01
MD 2.41 2.06 2.54 3.01 3.12 3.78 2.02 1.98 1.90 1.20 1.14 1.14 1.01

4. Discussion

The tested SMSs were evaluated based on the reaction time to the SWC change
caused by irrigation or rainfall events. Furthermore, they were tested based on the field
calibration procedure used to relate the SWC measured with SMSs to the one obtained
by the gravimetric method (GM), i.e., accuracy. By comparing the CROPWAT model and
the SWC measurement results from different SMSs, a difference in CWR was observed,
whereby the CROPWAT model underestimated the CWR for 161 mm (Table 3). Even
though the CROPWAT model is a useful tool in irrigation scheduling of different crops,
we have verified that using SMSs, the in situ measurement gives more accurate insights
into CWR. The range of SWCs between subsequent irrigation events was SMS- and soil
layer-dependent. The drip irrigation system showed high efficiency in the irrigation of
apple orchards, with slow, lower, and more frequent application rates maintaining the SWC
between the FC and MAD, meaning that readily available water was dominant in the soil.
The study results showed that irrigation scheduling, i.e., the irrigation rate, was sufficient
to wet the observed soil layer (40 cm), since all sensors in this study responded to changes
in the SWC (Figure 4). A similar pattern of results was obtained by Svoboda et al. [41]. The
authors suggest that irrigation to a maximum soil depth of at least 40–60 cm ensures that
the water is available for and depleted by the apple roots. As expected, in this study, the
highest SWC was in the upper soil layer (20 cm), while the maximum water uptake occurred
in the 30–40 cm soil layer (Figure 4, Table 4). The findings are directly in line with previous
findings of Aguzzoni et al. [42]. The authors claim that most of the irrigation water in the
apple orchard was present in the 0–0.2 m soil layer, but the irrigation water also infiltrated
up to a 0.6 m depth. Additionally, Penna et al. [43] have shown that apple trees rely mostly
on the soil water present in the upper 20–40 cm. As for rainfall events in this study, the
response of the SMSs depended on the amount of rainfall and the installation depth. For
example, at the beginning of the study period (10 May = 11.5 mm, 17 May = 9.8 mm), a
change in the SWC was recorded by the SM150 and PR2 SMSs at all observed soil depths,
while no change in the SWC was recorded by the remaining SMSs in this study. Moreover,
the differences in the SWC at the observed soil depths among SMSs were visible. At the
beginning of the study period, till end of the June, the SM150 and PR2 SMSs showed
variations in the SWC depending on the installation depth. This is opposite to Watermark
and the tensiometer, for which the readings are quite uniform in the mentioned period at
all observed soil depths (Figure 4). This is supported by the data from Table 4. It is visible
that the SWC values are almost equal at depths of 30 and 40 cm. The above result indicated
a slower reaction of the mentioned sensors at depths of 30 and 40 cm, even though the
irrigation rate was sufficient to wet the observed soil layer. Furthermore, this means that
the sensors underestimated the SWC, which led to overirrigation and unnecessary water
consumption. This is also supported by the moderate correlation (r) for the Watermark
(20 cm = 0.63, 30 cm = 0.60, and 40 cm = 0.59) and tensiometer (20 cm = 0.29, 30 cm = 0.26,
and 40 cm = 0.24) compared to the remaining SMSs used in this study (Table 5). On average,
the response time of the Watermark and tensiometer to an irrigation or rainfall event was
2–3 h, while for TDR, SM150, and PR2, the response time was below 5 min (the stated
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response times refer to a 20 cm installation depth). Additionally, Domínguez-Niño et al. [26]
noted that sensors closer to the dripper in position and depth respond quickly. Watermark
and tensiometer tended to show synchronized patterns in terms of their responses to
irrigation cycles (Figure 4). Their better performance (for a <30 cm soil layer, R2 = 0.91, for
a 31–60 cm soil layer, R2 = 0.98) under laboratory conditions suggests the importance of
the complex relationship between the soil–plant–irrigation system in the open field. The
implications of these findings are also discussed by Domínguez-Niño et al. [26]. The authors
stated that variability in readings from SMSs installed in the field lies in the positioning of
SMSs in relation to the dripper, i.e., the wet bulbs. As for TDR300 (Table 4), the average
SWC was higher than that obtained by the GM (TDR300 = 38.93%vol., GM = 36.23%vol.).
According to the results obtained, TDR300 overestimated SWC, which in practice means
that water stress can occur due to a lack of water, i.e., a yield reduction and impaired
quality, which was confirmed by the weak correlation between TDR300 and SWC obtained
with GM (r = 0.32, Table 5). This result ties well with a study by Gong et al. [44], where the
authors state that high clay contents cause an overestimation of the SWC measured with
TDR in the high moisture range. Furthermore, Tanriverdi et al. [45] state that an increase
in the percentage of clay and organic substances in the soil also contributes to the errors
in the measurements performed by the TDR equipment. When comparing our results to
those of Jama-Rodzeńska et al. [46], it must be pointed out that the study results do not
match. The authors measured the SWC in irrigated potatoes in growing pots and stated
that TDR300 gave lower SWC values compared to SM150. In our study, TDR300 showed
higher SWC values (Table 4, 3% vol.). Overall, in this study, the best SMS performance
was noted for SM150 and PR2. As mentioned earlier, both sensors captured rainfall and
irrigation events (Figure 4). Minimum deviations were observed in the SWC measured
by the mentioned sensors and GM (±1%, Table 4), which was also confirmed with strong
correlations (Table 5) for the observed soil depths; SM150—r = 0.95 (20 cm), r = 0.96 (30 cm),
and r = 0.72 (40 cm), and PR2—r = 0.96 (20 cm), r = 0.97 (30 cm), and r = 0.91 (40 cm).
Regardless of the strong correlation between SM150 and GM measurements, it should be
noted that the SM150 SMS underestimated the SWC at all observed soil depths (Table 4),
where the most pronounced deviation was at the deepest observed soil depth. In their
research results, Zhu et al. [47] stated a better performance of TDR300 compared to SM150,
although it should be emphasized that the authors used the high clay mode for TDR300,
yet the soil at their study site contained 17% clay. The good performance of PR2 was
confirmed by Dhakal et al. [48]. The authors conclude that the PR2 profile probe could be a
reliable alternative to more expensive and difficult techniques. The performance evaluation
(RMSE) also showed the best performance of PR2 (Table 7) at all observed soil depths. The
strongest correlations were found among Watermark and tensiometer, and among SM150
and PR2 (Table 6). Generally, sensors with the strongest correlations can be classified into
two categories, as the tensiometer and Watermark measure the soil water tension (kPa),
while SM150 and PR2 measure the volumetric SWC (%vol.). The performance of PR2
was also tested by Qi and Helmers [40], Dhakal et al. [48], and Kaman and Özbek [49].
Generally, they concluded that PR2 could be used for the precise measurement of the soil
VWC after a calibration for the specific soil type is performed. The results of this study
confirm our [31] previous findings where the Watermark and tensiometer overestimated the
SWC, while TDR underestimated the SWC. The above refers to the rainfed treatment, while
in the irrigated treatment, in this study, the results were opposite, i.e., the Watermark and
tensiometer underestimated the SWC, while TDR300 overestimated the SWC. Accordingly,
the Watermark and tensiometer tend to overestimate and TDR300 underestimate measured
values at a low SWC level, and this should be considered when determining the irrigation
time, i.e., irrigation scheduling. Overall, these findings are in accordance with findings
reported by Ganjegunte et al. [50]. The authors have also stated that the Watermark and
tensiometer have a tendency to underestimate the SWC in irrigated conditions. The higher
accuracy of Watermark, tensiometer, and TDR300 in the rainfed treatment (Tables 8 and 10)
indicates a better reaction of the SMSs in conditions in which the dry and wet phases of the
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soil alternate, i.e., a slower reaction under conditions of a high SWC. The above may be
related to a higher clay content, as is the case in this field study (Table 1), where there is a
slower release of water, especially in irrigated conditions. Unlike the previously mentioned
three sensors, SM150 and PR2 showed high accuracy in the irrigated treatment, as well as
under rainfed conditions.

Considering the results of previously presented research, as well as our research, it is
important to point out that regardless of the operation principle, each SMS has advantages
and disadvantages that should be considered when choosing an SMS for specific agroe-
cological conditions, i.e., spatial scale, soil properties, measured parameter, installation
depth and positioning, temperature, salinity, response time, and cost, which have been the
subjects of various studies. The SMSs used for irrigation scheduling are mostly confined
at a spatial scale with single-point measurements, such as Watermark, tensiometers, TDR,
and SM150 used in this study. The PR2 measures the SWC across the vertical soil profile
with multiple single-point sensors embedded in a probe or rod. The advantage of this type
of sensor design is that it provides an insight into the penetration of water through the root
zone and reduces soil disturbance due to the need for the excavation of a larger number of
installation holes at different soil depths. Ultimately, the application of PR2 reduces the
cost by measuring the SWC at different soil depths with one SMS. Watermark is a relatively
affordable single-point SMS and easy to install at any soil depth. It is temperature [51,52]
and soil type [52] dependent, with a minimal effect of soil water salinity [53]. For the
Watermark SMS, Berrada et al. [54] have reported erratic measurements during prolonged
drying cycles exceeding 90 kPa. Perhaps the most important for end users is to highlight the
need to calibrate the Watermark SMS, i.e., to convert the soil water potential (cbar) into the
volumetric water content for each soil type [18]. The tensiometer is a cost-effective SMS that
provides continuous measurements of the SWC (cbar) without soil disturbance. Compared
to solid-state sensors such as the Watermark or TDR, tensiometers tend to require more
maintenance [55], which, beside the unsuitable SWC measurement in dry soils [56], is often
pointed out as the biggest drawback. The TDR is a highly accurate method for measuring
the SWC [57], yet is affected by salinity, temperature, and metallic soil components such
as ironstone [58]. High conductivity in clay soils results in an overestimation of SWC that
was found for the TDR due to the bound water [59]. The SM150 is a capacitance sensor
that can be used as a portable sensor or buried in the soil. It is essentially insensitive to
soil temperature in silt loam soil, and is marginally sensitive in loamy sand [47]. Kukal
et al. [60] reported high accuracy of SM150, where better performance was noted in silt
loam with a vertical orientation and a horizontal orientation in loamy sand. The PR2 is
multi-sensor frequency domain reflectometry probe that performs repeated measurements
of the SWC (%vol.) at one location. Limited study results are available for PR2. Dhakal
et al. [48] noted that multi-sensor capacitance probes have identified the importance of
calibrating by the soil depth and concluded that the PR2 could be a reliable alternative to
more expensive and difficult techniques such as the neutron probe method for the precise
measurement of the soil VWC. Additionally, Qi and Helmers [40] state that a site-specific
calibration is necessary for the PR2 probe, and equations calibrated by data from a longer
period performed better than data from a shorter period. Humidity inside the access tube,
non-uniform contact between access tube wall and soil, irregular orientation of the probe
in the tube, and poor field installation can vitiate permittivity readings [61].

Furthermore, the accuracy of the SMS depends on the site characteristics, e.g., the soil
moisture regime, soil type and homogeneity, and presence of stones and roots [62]. The
SMSs also differ in response times to wetting and drying cycles under different agroecologi-
cal conditions. The SMS response time at different installation depths is conditioned by the
soil type and previous agrotechnical operations, i.e., tillage pan. Different soil types will
have different water movements (hydraulic conductivity), depending on the soil texture
and structure. For example, sandy soils with large pores tend to conduct water more
easily than clay soils, i.e., soils with smaller pores. Additionally, a different soil type will
condition a good contact of the SMS with the soil, which is very important when installing
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the SMS, since the accuracy will depend on it. When placing the SMS at different depths
in the cultivated soil, the response time will depend on soil compaction, i.e., bulk density
and soil porosity. Placing the SMS near the tillage pan can cause low accuracy due to the
severe soil compaction, which limits water movement. Moreover, the speed of infiltration
depends on the compaction of the soil, which is of particular importance during irrigation
or rainfall events, as it will determine the water movement through soil. All of the above
will determine the SMS performance and accuracy. As for the SMSs used in this study,
Watermark is significantly affected by the soil texture [63] and has a slow response time
when considering events of rapid drying or partial rewetting of the soil [39,64]. Vettorello
and Marinho [65] noted that during the wetting procedure, Watermark presented a delay
of about 2 h in detecting water, while tensiometer detection was almost instantaneous.
Watermark and tensiometer performance accuracy in Perea et al. [66] were poorer at 15 cm
as compared to a 30 cm depth, which was mostly attributed to more intense soil wetting
and drying cycles near the soil surface. The authors also noted poor accuracy in the heavier
textured clay soils due to high shrinking and swelling properties. The time delay in the
response of the TDR probes to precipitation, evaporation, transpiration, or drainage was
previously reported by Hagenau et al. [67]. SM150 showed greater accuracy in the loamy
sand than in the silt loam, i.e., the soil type significantly affected the sensor performance in
accurately estimating soil moisture, while the sensor installation orientation did not play a
role in sensor performance [68]. As for PR2, Dhakal et al. [48] claims that studies on the
accuracy of multi-sensor capacitance probes have identified the importance of calibrating
by soil depth, and that the site-specific calibration will improve the accuracy of the sensor.

Future research should prioritize investigating soil moisture dynamics concerning
bulb wetting patterns, sensor placement relative to plant roots, and soil temperature in
irrigated orchards.

5. Conclusions

The performance of four commercially available soil moisture sensors and one soil
moisture probe was evaluated in an irrigated apple orchard. The sensors included Wa-
termark, tensiometer, TDR300, and SM150, and the PR2 soil moisture probe. The sensor
performance was determined by comparing its readings with gravimetric measurements of
the soil water content obtained during the study period. In general, all sensors responded
to wetting and drying, whereby the performance ranking from high to low was PR2,
SM150 (horizontal installation), Watermark, tensiometer, and TDR300 (high clay mode).
In addition, although SM150 showed a high level of accuracy compared to the remaining
sensors, it is important to point out that the soil water content was underestimated at all
observed soil depths. Although the results of this study highlight that the soil moisture
probe (PR2) showed better performance in an irrigated orchard compared to single point-
based soil moisture sensors, additional field studies need to be conducted within variable
agroecological conditions to evaluate the performance and to provide guidelines on soil
moisture measuring techniques in irrigated orchards. Future research should be focused
on the application of soil moisture tests in relation to bulb wetting patterns, placement
in relation to the plant, i.e., the roots, and the influence of EC and soil temperature in an
irrigated orchard.
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